Impacts of laser land leveling in rice–wheat systems of the north–western indo-gangetic plains of India uri icon

abstract

  • We assessed the impact of laser land leveling technology in rice-wheat (RW) systems of north-west India using data collected from household surveys in 2011. We compared crop yield and total irrigation time required per season between laser leveled (LLL) and traditionally leveled (TLL) fields. Laser leveling in rice fields reduced irrigation time by 47-69 h/ha/season and improved yield by approximately 7 % compared with traditionally leveled fields. In wheat, irrigation time was reduced by 10-12 h/ha/season and yield increased by 7-9 % in laser leveled fields. Our analysis showed that laser land leveling is a scale neutral technology, not biased towards large farmers. Farmers benefited by an additional USD 143.5/ha/year through increased yields in RW systems and reduced electricity used in laser leveled fields compared to traditionally leveled fields when estimated by using the electricity tariff equivalent to the average subsidized tariff for agricultural use. This benefit became much larger when estimated by using an electricity tariff equivalent to the average cost of its supply. Hence, assuming an average electricity tariff equivalent to the average cost of its supply in the year 201011 in the country, the net benefit of shifting from TLL to LLL in RW systems in the study area was USD 194 per ha per year. This large difference in benefits indicates the loss due to market distortions by subsidy in electricity and hence, is a matter of policy concern requiring further scrutiny. The RW system in a hectare of laser leveled field required 754 kWh less electricity for irrigation per year compared to a traditionally leveled field. Furthermore, if 50 % of the area under the RW system in Haryana and Punjab states were laser leveled, this would provide an additional production of 699 million kg of rice and 987 million kg of wheat, amounting to USD 385 million/year. Thus, laser leveling contributes to food security and economical use of water and energy resources.

publication date

  • 2015
  • 2015