The complex geography of domestication of the African rice Oryza glaberrima uri icon


  • Author summary For many crops it is not clear how they were domesticated from their wild progenitors. Transition from a wild to domesticated state required a series of genetic changes, and studying the evolutionary origin of these domestication-causing mutations are key to understanding the domestication origins of a crop. Moreover, population comparisons provide insight into the relationship between wild and cultivated populations and the evolutionary history of domestication. In this study, we investigated the domestication history of Oryza glaberrima, a rice species that was domesticated in West Africa independent from the Asian rice species O. sativa. Using genome-wide data from a large sample of domesticated and wild African rice samples we did not find evidence that supported the established domestication model for O. glaberrimaa single domestication origin. Rather, our evidence suggests the domestication process for African rice was initiated in multiple regions of West Africa, caused potentially by the local environments and cultivation preference of people. Hence domestication of African rice was a multi-regional process.
  • While the domestication history of Asian rice has been extensively studied, details of the evolution of African rice remain elusive. The inner Niger delta has been suggested as the center of origin but molecular data to support this hypothesis is lacking. Here, we present a comprehensive analysis of the evolutionary and domestication history of African rice. By analyzing whole genome re-sequencing data from 282 individuals of domesticated African rice Oryza glaberrima and its progenitor O. barthii, we hypothesize a non-centric (i.e. multiregional) domestication origin for African rice. Our analyses showed genetic structure within O. glaberrima that has a geographical association. Furthermore, we have evidence that the previously hypothesized O. barthii progenitor populations in West Africa have evolutionary signatures similar to domesticated rice and carried causal domestication mutations, suggesting those progenitors were either mislabeled or may actually represent feral wild-domesticated hybrids. Phylogeographic analysis of genes involved in the core domestication process suggests that the origins of causal domestication mutations could be traced to wild progenitors in multiple different locations in West and Central Africa. In addition, measurements of panicle threshability, a key early domestication trait for seed shattering, were consistent with the gene phylogeographic results. We suggest seed non-shattering was selected from multiple genotypes, possibly arising from different geographical regions. Based on our evidence, O. glaberrima was not domesticated from a single centric location but was a result of diffuse process where multiple regions contributed key alleles for different domestication traits.

publication date

  • 2019
  • 2019