Monosomic alien addition lines (MAALs) of Oryza rhizomatis in Oryza sativa: production, cytology, alien trait introgression, molecular analysis and breeding application. uri icon

abstract

  • Key message Development of MAALs and disomic introgression lines derived from the cross between O. sativa and O. rhizomatis to exploit and utilize the valuable traits for rice improvement.
  • The CC genome wild species, Oryza rhizomatis, possesses valuable traits for rice improvement. Unlike other CC genome wild rice, O. rhizomatis is less studied and none of the research has focused on the utilization of this resource in rice breeding. The transfer of novel genes governing the valuable traits from O. rhizomatis is difficult due to high genome incompatibility with O. sativa. Here we report the development of backcross progenies and complete sets of monosomic alien addition lines (MAALs) for the first time from O. rhizomatis in O. sativa line IR31917-45-3-2. Autotetraploid IR31917-45-3-2 (4x = AAAA) was used to generate allotriploid F-1, and the F-1 plant was backcrossed to IR31917-45-3-2 (2x). Forty-seven BC1F1 and 73 BC2F1 plants were produced with chromosome numbers ranging from 24 to 33 (2x + 9) and 24 to 27 (2x + 3), respectively. A complete set of MAALs were identified by morphological, cytological and marker-based analysis. A total of 116 CC genome-specific InDel markers across the 12 chromosome of rice were used to detect O. rhizomatis chromosome segments in F-1, BC1F1, BC2F2, MAALs and disomic introgression lines (DILs). Expressions of major phenotypic traits inherited from O. rhizomatis were observed in MAAL-derived DILs. Small chromosomal segments of O. rhizomatis for chromosomes 1, 2, 4, 5, 6, 7, 10 and 12 were detected in DILs, and some of the introgression lines showed insect resistance against brown planthopper and green leafhopper. These newly developed MAALs and DILs will be useful for gene mining and more precise faster transfer of favorable genes to improve rice cultivars.

publication date

  • 2018
  • 2018
  • 2018