Global cropping intensity gaps: Increasing food production without cropland expansion uri icon

abstract

  • To feed the world's growing population, more food needs to be produced using currently available cropland. In addition to yield increase, increasing cropping intensity may provide another promising opportunity to boost global crop production. However, spatially explicit information on the cropping intensity gap (CIG) of current global croplands is lacking. Here, we developed the first spatially explicit approach to measure the global CIG, which represents the difference between the potential and actual cropping intensity. Results indicate that the global average CIG around the year 2010 was 0.48 and 0.17 for the temperature- and temperature/precipitationlimited scenarios, respectively. Surprisingly, global harvest areas can be expanded by another 7.36 million km(2) and 2.71 million km(2) (37.55% and 13.83% of current global cropland) under the two scenarios, respectively. This will largely compensate the future global cropland loss due to increasing urbanization and industrialization. Latin America has the largest potential to expand its harvest area by closing the CIGs, followed by Asia. Some countries in Africa have a large CIG, meaning that some additional harvests can potentially be achieved. Our analysis suggests that reducing the CIG would provide a potential strategy to increase global food production without cropland expansion, thus also helping achieve other Sustainable Development Goals such as biodiversity conservation and climate change mitigation.

publication date

  • 2018
  • 2018