A simple hydroponic hardening system and the effect of nitrogen source on the acclimation of in vitro cassava (Manihot esculenta Crantz) uri icon

abstract

  • Plant tissue culture technology is being widely used for large-scale, rapid, clonal multiplication and genetic transformation in cassava. The main limitation of this technology is the period of acclimation of the fragile in vitro plants after they have been multiplied or regenerated. Most losses of in vitro plants occur when the plantlets are moved directly from the test tubes to the ex vitro conditions. Our aim was to design a simple, rapid, low-maintenance hydroponic system to improve survival rate of transplanting to the ex vitro conditions through the rapid acclimation process of in vitro plants. In this paper, we have developed a simple hydroponic system to accelerate the cassava acclimation and multiplication process. This system considerably increased the survival percentage of in vitro and/or transgenic lines and reduces the time requirement for multiplication by hydroponic acclimation. In order to assess the effectiveness of the acclimation of seedlings on their establishment, we analyzed plant growth and field survival rate with response to different nitrogen (N) sources using different cassava accessions. Nitrogen sources of NO3- and NH4NO3 increased plant growth and root length compared to NH4+ alone, or water treatments. The greenhouse and field survivability of N-hardened plants, including transgenic lines, were significantly different in growth and development. We present a simple NO3- hydroponic acclimation system that can be quickly and cheaply constructed and used by the cassava community around the world. The efficiency of our proposed N hydroponic acclimation system is validated in the transgenic development pipeline which will enhance the cassava molecular breeding.

publication date

  • 2017
  • 2017
  • 2017