Climate change adaptation in agriculture: Ex ante analysis of promising and alternative crop technologies using DSSAT and IMPACT uri icon

abstract

  • Achieving and maintaining global food security is challenged by changes in population, income, and climate, among other drivers. Assessing these challenges and possible solutions over the coming decades requires a rigorous multidisciplinary approach. To answer this challenge, the International Food Policy Research Institute (IFPRI) has developed a system of linked simulation models of global agriculture to do long-run scenario analysis of the effects of climate change and various adaptation strategies. This system includes the core International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), which is linked to water models (global hydrology, water basin management, and water stress on crops) and crop simulation models
  • Achieving and maintaining global food security is challenged by changes in population, income, and climate, among other drivers. Assessing these challenges and possible solutions over the coming decades requires a rigorous multidisciplinary approach. To answer this challenge, the International Food Policy Research Institute (IFPRI) has developed a system of linked simulation models of global agriculture to do long-run scenario analysis of the effects of climate change and various adaptation strategies. This system includes the core International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), which is linked to water models (global hydrology, water basin management, and water stress on crops) and crop simulation models. The Global Futures and Strategic Foresight program, a CGIAR initiative led by IFPRI in collaboration with other CGIAR research centers, is working to improve these tools and conducting ex ante assessments of promising technologies, investments, and policies under alternative global futures. Baseline projections from IMPACT set the foundation with the latest outlook on long-term trends in food demand and agricultural production based on projected changes in population, income, technology, and climate. On top of the baseline, scenarios are developed for assessing the impacts of promising climate-adapted technologies for maize, wheat, rice, potatoes, sorghum, groundnut, and cassava on yields, area, production, trade, and prices in 2050 at a variety of scales. Yield gains from adoption of the selected technologies vary by technology and region, but are found to be generally comparable in scale to (and thus able to offset) the adverse effects of climate change under a high-emissions representative concentration pathway (RCP 8.5). Even more important in this long-term climate change scenario are effects of growth in population, income, and investments in overall technological change, highlighting the importance of linked assessment of biophysical and socioeconomic drivers to better understand climate impacts and responses. For all crops in the selected countries, climate change impacts are negative with the baseline technology. All new technologies have beneficial effects on yields under climate change, with combined traits (drought and heat tolerance) showing the greatest benefit

publication date

  • 2015
  • 2015
  • 2015