Temporal change in land use by irrigation source in Tamil Nadu and management implications. uri icon

abstract

  • Interannual variation in rainfall throughout Tamil Nadu has been causing frequent and noticeable land use changes despite the rapid development in groundwater irrigation. Identifying periodically water-stressed areas is the first and crucial step to minimizing negative effects on crop production. Such analysis must be conducted at the basin level as it is an independent water accounting unit. This paper investigates the temporal variation in irrigated area between 2000-2001 and 2010-2011 due to rainfall variation at the state and sub-basin level by mapping and classifying Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day composite satellite imagery using spectral matching techniques. A land use/land cover map was drawn with an overall classification accuracy of 87.2 %. Area estimates between the MODIS-derived net irrigated area and district-level statistics (2000-2001 to 2007-2008) were in 95 % agreement. A significant decrease in irrigated area (30-40 %) was observed during the water-stressed years of 2002-2003, 2003-2004, and 2009-2010. Major land use changes occurred three times during 2000 to 2010. This study demonstrates how remote sensing can identify areas that are prone to repeated land use changes and pin-point key target areas for the promotion of drought-tolerant varieties, alternative water management practices, and new cropping patterns to ensure sustainable agriculture for food security and livelihoods.
  • Interannual variation in rainfall throughout Tamil Nadu has been causing frequent and noticeable land use changes despite the rapid development in groundwater irrigation. Identifying periodically water-stressed areas is the first and crucial step to minimizing negative effects on crop production. Such analysis must be conducted at the basin level as it is an independent water accounting unit. This paper investigates the temporal variation in irrigated area between 2000?2001 and 2010?2011 due to rainfall variation at the state and sub-basin level by mapping and classifying Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day composite satellite imagery using spectral matching techniques. A land use/land cover map was drawn with an overall classification accuracy of 87.2 %. Area estimates between the MODISderived net irrigated area and district-level statistics (2000?2001 to 2007?2008) were in 95 % agreement. A significant decrease in irrigated area (30?40 %) was observed during the water-stressed years of 2002?2003, 2003?2004, and 2009?2010. Major land use changes occurred three times during 2000 to 2010. This study demonstrates how remote sensing can identify areas that are prone to repeated land use changes and pin-point key target areas for the promotion of drought-tolerant varieties, alternativewater management practices, and new cropping patterns to ensure sustainable agriculture for food security and livelihoods

publication date

  • 2015
  • 2015
  • 2015