Irrigation Performance using Hydrological and Remote Sensing Modeling uri icon

abstract

  • Development of water saving measures requires a thorough understanding of the water balance. Irrigation performance and water accounting are useful tools to assess water use and related productivity. Remote sensing and a hydrological model were applied to an irrigation project in western Turkey to estimate the water balance to support water use and productivity analyses. Remote sensing techniques can produce high spatial coverage of important terms in the water balance for large areas, but at the cost of a rather sparse temporal resolution. Hydrological models can produce all the terms of the water balance at a high temporal, but low spatial resolution. Actual evapotranspiration for an irrigated area in western Turkey was calculated using the surface energy balance algorithm for land (SEBAL) remote sensing land algorithm for two Landsat images. The hydrological model soil-water-atmosphere-plant (SWAP) was setup to simulate the water balance for the same area, assuming a certain distribution in soil properties, planting dates and irrigation practices. A comparison between evapotranspiration determined from SEBAL and from SWAP was made and differences were minimized by adapting the distribution in planting date and irrigation practice. The optimized input data for SWAP were used to simulate all terms of the accumulated water balance for the entire irrigation project, and subsequently used to derive the irrigation performance indicators. The innovative methodology presented is attractive as it diminishes the need of field data and combines the strong points of remotely sensed techniques and hydrological models.

publication date

  • 2002
  • 2002
  • 2002
  • 2002