Methodology for cork plank characterization (Quercus suber L.) by near-infrared spectroscopy and image analysis uri icon

abstract

  • The procedures used today to characterize cork plank for the manufacture of cork bottle stoppers continue to be based on a traditional, manual method that is highly subjective. Furthermore, there is no specific legislation regarding cork classification. The objective of this viability study is to assess the potential of near-infrared spectroscopy (NIRS) technology for characterizing cork plank according to the following variables: aspect or visual quality, porosity, moisture and geographical origin. In order to calculate the porosity coefficient, an image analysis program was specifically developed in Visual Basic language for a desktop scanner. A set comprising 170 samples from two geographical areas of Andalusia (Spain) was classified into eight quality classes by visual inspection. Spectra were obtained in the transverse and tangential sections of the cork planks using an NIRSystems 6500 SY II reflectance spectrophotometer. The quantitative calibrations showed cross-validation coefficients of determination of 0.47 for visual quality, 0.69 for porosity and 0.66 for moisture. The results obtained using NIRS technology are promising considering the heterogeneity and variability of a natural product such as cork in spite of the fact that the standard error of cross validation (SECV) in the quantitative analysis is greater than the standard error of laboratory (SEL) for the three variables. The qualitative analysis regarding geographical origin achieved very satisfactory results. Applying these methods in industry will permit quality control procedures to be automated, as well as establishing correlations between the different classification systems currently used in the sector. These methods can be implemented in the cork chain of custody certification and will also provide a certainly more objective tool for assessing the economic value of the product.

publication date

  • 2010
  • 2010