Comparison of soil properties between continuously cultivated and adjacent uncultivated soils in rice-based systems uri icon

abstract

  • To assess cultivation-induced changes followed during the Green Revolution on continuous rice-rice and rice-wheat cropping, fence-line comparisons between cultivated and adjacent noncultivated soils were made to (a) quantify changes in selected soil chemical and biological properties at two moisture conditions, (b) determine the N, P, and K uptake of rice and wheat as affected by changes in soil properties, and (c) determine the relationship between N, P, and K uptake and soil properties. Two parallel experiments were conducted: laboratory incubation and a greenhouse experiment with soils collected from seven rice-wheat and two rice-rice soils. As an average, NH4OAc-extractable K, water soluble organic carbon, and hot water soluble organic carbon were all lower by 48%, total carbon by 35%, total nitrogen by 33%, and microbial biomass carbon by 38% in the cultivated soils, whereas no significant change was observed in the enzyme activities. Changes were mostly associated with the existing fertilizer practices and moisture status of the soil during cultivation. In general, fertilizers were not sufficient to replenish crop removal. Soil type also influenced cultivation changes especially soil carbon parameters. Lighter soil texture had higher decomposable organic C and total C declined than heavy soils. Soils with higher declined in both decomposable organic C and total C had higher reduction in functional diversity of culturable microorganisms. The declining C pools caused lower N uptake and there was a clear association between organic matter parameters and N uptake. Olsen P was correlated with P uptake and extractable K with K uptake. As expected, crop biomass correlated with N, P, and K uptake of plants. Comparison of cultivated and its corresponding uncultivated soil provides possibility to determine management effect on soil status.

publication date

  • 2009
  • 2009