Function Approximation and Documentation of Sampling Data Using Artificial Neural Networks uri icon

abstract

  • BP network and RBF network can fit non-linear functions (sampling data) with specified accuracy and don't require mathematical assumptions. In addition to the interpolation, BP network is used to extrapolate the functions and the asymptote of the sampling data can be drawn. BP network cost a longer time to train the network and the results are always less stable compared to the RBF network. RBF network require more neurons to fit functions and generally it may not be used to extrapolate the functions. The mathematical function for sampling data can be exactly fitted using artificial neural network algorithms by adjusting the desired accuracy and maximum iterations. The total numbers of functional species of invertebrates in the tropical irrigated rice field are extrapolated as 140 to 149 using trained BP network, which are similar to the observed richness.
  • Biodiversity studies in ecology often begin with the fitting and documentation of sampling data. This study is conducted to make function approximation on sampling data and to document the sampling information using artificial neural network algorithms, based on the invertebrate data sampled in the irrigated rice field.
  • Three types of sampling data, i.e., the curve species richness vs. the sample size, the curve rarefaction, and the curve mean abundance of newly sampled species vs.the sample size, are fitted and documented using BP (Backpropagation) network and RBF (Radial Basis Function) network. As the comparisons, The Arrhenius model, and rarefaction model, and power function are tested for their ability to fit these data. The results show that the BP network and RBF network fit the data better than these models with smaller errors.

publication date

  • 2006
  • 2006
  • 2006