Physiological and Proteomic Responses of Rice Peduncles to Drought Stress uri icon


  • Panicle exsertion, an essential physiological process for obtaining high grain yield in rice is mainly driven by peduncle (uppermost internode) elongation. Drought at heading/panicle emergence prevented peduncle elongation from reaching its maximum length even after re-watering. This inhibitory effect of drought resulted in delayed heading and trapping spikelets lower down the panicle inside the flag-leaf sheath, thus increasing sterility in the lower un-exserted spikelets and also among the upper superior spikelets whose exsertion was delayed. Intermittent drought stress caused a significant reduction in relative water content (RWC) and an increase in the abscisic acid (ABA) level of the peduncles, while both returned to normal levels upon re-watering. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis revealed the down-regulation of GA biosynthetic genes during drought. 2D-PAGE analysis of proteins from peduncles collected under well-watered, drought-stressed, and re-watered plants revealed at least twofold differential changes in expression of 31 proteins in response to drought and most of these changes were largely reversed by re-watering. The results indicate that ABA-GA antagonism is a key focal point for understanding the failure of panicle exsertion under drought stress and the consequent increase in spikelet sterility.

publication date

  • 2010
  • 2011
  • 2011