Impact of irrigation timing on simulated water-crop production functions uri icon

abstract

  • Estimates of the effects of alternative discrete irrigation water scheduling options on consumptive use or evapotranspiration and on crop yield are developed for a northeastern Colorado case study. The analysis proceeds from the premise that farmers, rather than considering irrigation water as a continuously variable input, tend to treat irrigations as discrete events, and make scheduling decisions as choices among numbers of irrigations of approximately equal volume. The van Genuchten-Hanks model is employed to develop a transient-state water-crop production function model. Results for two crops-corn grain and edible dry beans-are presented here. Findings are that the effect of the number of irrigations on evapotranspiration and yield per hectare varies widely, depending upon the timing of applications. When farmers can choose the optimal timing of irrigations, a reduced number of irrigations has a relatively limited adverse effect on crop production until irrigations are reduced to less than four per season. However, there are many situations in which an inability to apply water can result in a very large reduction from potential maximum yield, particularly if water is withheld early in the season and/or during the rapid growth period of the crops. In many contexts of irrigation water management, water policy analysts will wish to consider the more realistic discrete-input simulation model for policy evaluation.

publication date

  • 1997
  • 1997