Croppers to livestock keepers: livelihood transitions to 2050 in Africa due to climate change uri icon

abstract

  • The impacts of climate change are expected to be generally detrimental for agriculture in many parts of Africa. Overall, warming and drying may reduce crop yields by 10-20% to 2050, but there are places where losses are likely to be much more severe. Increasing frequencies of heat stress, drought and flooding events will result in yet further deleterious effects on crop and livestock productivity. There will be places in the coming decades where the livelihood strategies of rural people may need to change, to preserve food security and provide income-generating options. These are likely to include areas of Africa that are already marginal for crop production; as these become increasingly marginal, then livestock may provide an alternative to cropping. We carried out some analysis to identify areas in sub-Saharan Africa where such transitions might occur. For the currently cropped areas (which already include the highland areas where cropping intensity may increase in the future), we estimated probabilities of failed seasons for current: climate conditions, and compared these with estimates obtained for future climate conditions in 2050, using downscaled climate model output for a higher and a lower greenhouse-gas emission scenario. Transition zones can be identified where the increased probabilities of failed seasons may induce shifts from cropping to increased dependence on livestock. These zones are characterised in terms of existing agricultural system, current livestock densities, and levels of poverty. The analysis provides further evidence that climate change impacts in the marginal cropping lands may be severe, where poverty rates are already high. Results also suggest that those likely to be more affected are already more poor, on average. We discuss the implications of these results in a research-for-development targeting context that is likely to see the poor disproportionately and negatively affected by climate change. (C) 2008 Elsevier Ltd. All rights reserved.
  • The impacts of climate change are expected to be generally detrimental for agriculture in many parts of Africa. Overall, warming and drying may reduce crop yields by 10?20% to 2050, but there are places where losses are likely to be much more severe. Increasing frequencies of heat stress, drought and flooding events will result in yet further deleterious effects on crop and livestock productivity. There will be places in the coming decades where the livelihood strategies of rural people may need to change, to preserve food security and provide income-generating options. These are likely to include areas of Africa that are already marginal for crop production; as these become increasingly marginal, then livestock may provide an alternative to cropping. We carried out some analysis to identify areas in sub-Saharan Africa where such transitions might occur. For the currently cropped areas (which already include the highland areas where cropping intensity may increase in the future), we estimated probabilities of failed seasons for current climate conditions, and compared these with estimates obtained for future climate conditions in 2050, using downscaled climate model output for a higher and a lower greenhouse-gas emission scenario. Transition zones can be identified where the increased probabilities of failed seasons may induce shifts from cropping to increased dependence on livestock. These zones are characterised in terms of existing agricultural system, current livestock densities, and levels of poverty. The analysis provides further evidence that climate change impacts in the marginal cropping lands may be severe, where poverty rates are already high. Results also suggest that those likely to be more affected are already more poor, on average. We discuss the implications of these results in a research-for-development targeting context that is likely to see the poor disproportionately and negatively affected by climate change

publication date

  • 2009
  • 2009
  • 2009