Antibiosis component of resistance in sorghum to sorghum midge, Contarinia sorghicola uri icon

abstract

  • Sorghum midge, Contarinia sorghicola Coq. (Diptera: Cecidomyiidae) is an important pest of grain sorghum, and host-plant resistance is one of the most effective means of controlling this pest. We studied the antibiosis mechanism of resistance in sorghum to C. sorghicola in a diverse array of midge-resistant and midge-susceptible genotypes. Data were recorded on adult emergence, postembryonic developmental period, number of mature eggs in the ovary, fecundity, larval survival from artificially implanted eggs; and the tannins, soluble sugars, and protein content of 10-day old and mature grains during the 1982-91 rainy and post-rainy seasons.Adult emergence was significantly lower in the midge-resistant genotypes compared with the susceptible controls. Initiation of adult emergence was delayed by 4?8 days on DJ 6514, IS 8571, IS 9807, IS 10712, IS 19474, IS 19512, ICSV 830 and ICSV 197. Postembryonic developmental period was prolonged on DJ 6514, IS 15107, IS 3461, IS 7005, IS 19474, ICSV 831 and ICSV 197. However, the delay in adult emergence or the extended developmental period was not observed during the post-rainy season in some genotypes. These differences in the expression of antibiosis to midge in resistant genotypes over seasons may be attributed to the effect of environmental conditions on the insect development and chemical composition of sorghum grain. Amounts of tannins and proteins were generally greater in the midge-resistant lines compared with the susceptible ones (except tannins in DJ 6514) while the soluble sugars were low in the midge-resistant lines (except TAM 2566). These differences in chemical composition of the grain between genotypes and variations over seasons have been discussed in relation to the expression of antibiosis mechanism of resistance to the sorghum midge. Antibiosis to sorghum midge was also evident in terms of smaller size of larvae, lower number of eggs in the ovary, reduced fecundity, and larval survival. Midge-resistant lines have diverse effects on the biology of this insect. Antibiosis along with other components of resistance can be used to develop cultivars with stable resistance to C. sorghicola

publication date

  • 1993
  • 1993