Inheritance of drought resistance related traits in two crosses of groundnut (Arachis hypogaea L.) uri icon

abstract

  • Groundnut (Arachis hypogaea L.) is an important oilseed crop grown in more than 100 countries across wide range of environments. Frequent occurrence of drought is one of the limiting factors adversely affecting groundnut productivity, especially in rainfed areas, and hence genotypes having high water use efficiency (WUE) under limited available water need to be developed. In groundnut, WUE is correlated with SPAD chlorophyll meter reading (SCMR) and specific leaf area (SLA). These two traits, SCMR and SLA, can be used as surrogate traits for selecting for WUE. In order to improve SCMR and SLA, and in turn WUE in groundnut, a good knowledge of the genetic system controlling the expressions of these traits is essential for the selection of the most appropriate and efficient breeding procedure. The present investigation was conducted to determine the gene action controlling the inheritance of SCMR and SLA in two crosses, ICG 7243 x ICG 9418 and ICG 6766 x Chico, and their reciprocals. Six generations of each cross (P-1, P-2, F-1, F-2, BC1P1, and BC1P2) were evaluated for SCMR and SLA at two stages of the crop growth viz., 60 and 80 days after sowing (DAS). For SCMR at 80 DAS, additive effects were important in both the crosses whereas predominance of dominance effects with duplicate epistasis was observed for SCMR at 60 DAS and SLA at both stages in both the crosses. Predominance of additive effect for SCMR at 80 DAS suggested effective selection could be practiced even in early generations whereas for SCMR at 60 DAS and SLA at both stages in both crosses, it would be better to defer selection to later generations. Further, recording of SCMR and SLA should be done between 60 and 80 DAS for screening the germplasm lines for drought tolerance

publication date

  • 2011
  • 2011