Influence of cytoplasmic-nuclear male sterility systems on microsporogenesis in pearl millet (Pennisetum glaucum (L.) R. Br.) uri icon

abstract

  • Influence of a range of cytoplasms on microsporogenesis and anther development in pearl millet was studied using six isonuclear A-lines having five cytoplasms (A1, A2, A3, A4 and Av) and the nuclear genome of 81B. 81B was used as a male-fertile control. Microsporogenesis and anther development were normal in 81B. However, pollen mother cell (PMC)/microspore/pollen degeneration in the six A-lines occurred at different stages of anther development. Each cytoplasm had its unique influence on microsporogenesis and anther development as evidenced by different developmental paths followed by them leading to pollen abortion. The cause of pollen abortion differed from line to line, from floret to floret within a spikelet, from anther to anther within a floret, and in some cases even from locule to locule within an anther. Events that led to male sterility included anomalies in tapetum and callose behaviour, persistence of tapetum, endothecium thickness, and other unknown causes. The present study also indicated that anther/pollen development was more irregular in Pb 406A3. In 81A4 and 81A1 > 95% of anther locules followed a definite developmental path to pollen abortion. In the other A-lines many developmental paths were observed within the line and pollen degeneration occurred at various stages. This could be one of the reasons for greater instability of male sterility in the A2 and A3 systems and greater stability of male sterility in the A1 and A4 systems

publication date

  • 1997
  • 1997