Emaravirus-specific degenerate PCR primers allowed the identification of partial RNA-dependent RNA polymerase sequences of Maize red stripe virus and Pigeonpea sterility mosaic virus uri icon

abstract

  • Emaravirus is a recently established viral genus that includes two approved virus species: European mountain ash ringspot-associated virus (EMARaV) and Fig mosaic virus (FMV). Other described but unclassified viruses appear to share biological characteristics similar to emaraviruses, including segmented, negative-single stranded RNA genomes with enveloped virions approximately 80?200 nm in diameter. Sequence analysis of emaravirus genomes revealed the presence of conserved amino acid sequences in the RNA-dependent RNA polymerase gene (RdRp) denoted as pre-motif A, motifs A and C. Degenerate oligonucleotide primers were developed to these conserved sequences and were shown to amplify in reverse transcription-polymerase chain reaction assay (RT-PCR) DNA fragments of 276 bp and 360 bp in size. These primers efficiently detected emaraviruses with known sequences available in the database (FMV and EMARaV); they also detected viruses with limited sequence information such as Pigeonpea sterility mosaic virus (PPSMV) and Maize red stripe virus (MRSV). The degenerate primers designed on pre-motif A and motif A sequences successfully amplified the four species used as positive controls (276 bp), whereas those of motifs A and C failed to detect only MRSV. The amino acid sequences obtained from PPSMV and MRSV shared the highest identity with those of two other tentative species of the Emaravirus genus, Rose rosette virus (RRV) (69%) and Redbud yellow ringspot virus (RYRV) (60%), respectively. The phylogenetic tree constructed with 92 amino acid-long portions of polypeptide putatively encoded by RNA1 of definitive and tentative emaravirus species clustered PPSMV and MRSV in two separate clades close to RRV and Raspberry leaf blotch virus (RLBV), respectively. The newly developed degenerate primers have proved their efficacy in amplifying new emaravirus-specific sequences; accordingly, they could be useful in identifying new emaravirus-like species in nature

publication date

  • 2013