The Effect of Catena Position on Greenhouse Gas Emissions from Dambo Located Termite (Odontotermes transvaalensis) Mounds from Central Zimbabwe uri icon

abstract

  • Methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2)O) are greenhouse gases (GHGs) which cause global warming. Natural sources of GHGs include wetlands and termites. Previous studies have quantified GHG emissions from upland termites and no study has reported GHG emissions from seasonal wetlands (dambo) located termite mounds. The objective of this study was to evaluate the effect of dambo catena position on termite mound distribution and GHG emissions. It was hypothesized that mound density and GHG emissions from Odontotermes transvaalensis mounds, vary with catena position. The evaluated catena positions were margin, mid-slope, lower slope and bottom. Mound density was significantly lower in the bottom when compared to the other catena positions. The mean GHG fluxes were 88 ?g m2 hr-1, 0.78 mg m2 hr-1 and 1361 mg m2 hr-1 for N2) O, CH4 and CO2 respectively. Fluxes varied with catena position and were 0.48, 0.72, 1.35 and 0.79 mg m-2 hr-1 for CH4 , and 1173.7, 1440.7, 1798.7 and 922.8 mg m-2 hr-1 for CO2 in the margin, mid-slope, lower slope and the bottom catena position respectively. For N2) O, there were no significant differences between catena positions. It was concluded that dambo located Odontotermes transvaalensis termite mounds are an important source of GHGs, and emissions varied with catena position for CO2 and CH4

publication date

  • 2012