Breeding for abiotic stresses in pigeonpea uri icon


  • Pigeonpea, often considered as a drought tolerant crop, has the distinct advantage of having a large range of variation for maturity, leading to its adaptation to a wide range of environments and cropping systems. It encounters a number of abiotic stresses during its life cycle. The most important are extremes of moisture and temperature, photoperiod and mineral related stresses. While waterlogging affects plant growth by reducing oxygen diffusion rate between soil and atmosphere and by changing physical and chemical properties of soil, drought and high temperature mostly influence long duration pigeonpea, resulting in its forced maturity. Similarly, low temperature leads to conversion of intracellular water into ice and consequently shrinking of cells and wilting and death of plants. Soil salinity affects pigeonpea plants through osmotic stress and interference with uptake of mineral nutrients. Aluminium toxicity also reduces nutrient uptake efficiency of this crop. Though these stresses have a drastic impact on reducing productivity of pigeonpea, only limited efforts have been made towards screening and development of pigeonpea genotypes having tolerance to these abiotic stresses. Further, even these limited accomplishments are not well-documented. The present review provides comprehensive information vis-a-vis the work done on abiotic stress tolerance in pigeonpea

publication date

  • 2011